23 research outputs found

    The amber-colored liquid: a review on the color standards, methods of detection, issues and recommendations

    Get PDF
    For most natural or naturally derived liquid products, their colour reflects on their quality and occasionally affects customer preferences. To date, there are a few subjective and objective methods for colour measurement which are currently utilized by various industries. Researchers are also improving these methods and inventing new methods, as colour is proven to have the ability to provide various information on the condition and quality of the liquid. However, a review on the methods, especially for amber-coloured liquid, has not been conducted yet. This paper presents a comprehensive review on the subjective and objective methods for colour measurement of amber-coloured liquids. The pros and cons of the measurement methods, the effects of the colour on customer preferences, and the international industry standards on colour measurements are reviewed and discussed. In addition, this study elaborates on the issues and challenges related to the colour measurement techniques as well as recommendations for future research. This review demonstrates that the existing colour measurement technique can determine the colour according to the standards and colour scales. However, the efforts toward minimizing the complexity of the hardware while maximizing the signal processing through advanced computation are still lacking. Therefore, through this critical review, this review can hopefully intensify the efforts toward finding an optimized method or technique for colour measurement of liquids and thus expedite the development of a portable device that can measure colour accurately

    Modulation Techniques for Biomedical Implanted Devices and Their Challenges

    Get PDF
    Implanted medical devices are very important electronic devices because of their usefulness in monitoring and diagnosis, safety and comfort for patients. Since 1950s, remarkable efforts have been undertaken for the development of bio-medical implanted and wireless telemetry bio-devices. Issues such as design of suitable modulation methods, use of power and monitoring devices, transfer energy from external to internal parts with high efficiency and high data rates and low power consumption all play an important role in the development of implantable devices. This paper provides a comprehensive survey on various modulation and demodulation techniques such as amplitude shift keying (ASK), frequency shift keying (FSK) and phase shift keying (PSK) of the existing wireless implanted devices. The details of specifications, including carrier frequency, CMOS size, data rate, power consumption and supply, chip area and application of the various modulation schemes of the implanted devices are investigated and summarized in the tables along with the corresponding key references. Current challenges and problems of the typical modulation applications of these technologies are illustrated with a brief suggestions and discussion for the progress of implanted device research in the future. It is observed that the prime requisites for the good quality of the implanted devices and their reliability are the energy transformation, data rate, CMOS size, power consumption and operation frequency. This review will hopefully lead to increasing efforts towards the development of low powered, high efficient, high data rate and reliable implanted devices

    A Novel Quantum-Behaved Lightning Search Algorithm Approach to Improve the Fuzzy Logic Speed Controller for an Induction Motor Drive

    No full text
    This paper presents a novel lightning search algorithm (LSA) using quantum mechanics theories to generate a quantum-inspired LSA (QLSA). The QLSA improves the searching of each step leader to obtain the best position for a projectile. To evaluate the reliability and efficiency of the proposed algorithm, the QLSA is tested using eighteen benchmark functions with various characteristics. The QLSA is applied to improve the design of the fuzzy logic controller (FLC) for controlling the speed response of the induction motor drive. The proposed algorithm avoids the exhaustive conventional trial-and-error procedure for obtaining membership functions (MFs). The generated adaptive input and output MFs are implemented in the fuzzy speed controller design to formulate the objective functions. Mean absolute error (MAE) of the rotor speed is the objective function of optimization controller. An optimal QLSA-based FLC (QLSAF) optimization controller is employed to tune and minimize the MAE, thereby improving the performance of the induction motor with the change in speed and mechanical load. To validate the performance of the developed controller, the results obtained with the QLSAF are compared to the results obtained with LSA, the backtracking search algorithm (BSA), the gravitational search algorithm (GSA), the particle swarm optimization (PSO) and the proportional integral derivative controllers (PID), respectively. Results show that the QLASF outperforms the other control methods in all of the tested cases in terms of damping capability and transient response under different mechanical loads and speeds

    Energy harvesting for the implantable biomedical devices: issues and challenges

    Get PDF
    The development of implanted devices is essential because of their direct effect on the lives and safety of humanity. This paper presents the current issues and challenges related to all methods used to harvest energy for implantable biomedical devices. The advantages, disadvantages, and future trends of each method are discussed. The concept of harvesting energy from environmental sources and human body motion for implantable devices has gained a new relevance. In this review, the harvesting kinetic, electromagnetic, thermal and infrared radiant energies are discussed. Current issues and challenges related to the typical applications of these methods for energy harvesting are illustrated. Suggestions and discussion of the progress of research on implantable devices are also provided. This review is expected to increase research efforts to develop the battery-less implantable devices with reduced over hole size, low power, high efficiency, high data rate, and improved reliability and feasibility. Based on current literature, we believe that the inductive coupling link is the suitable method to be used to power the battery-less devices. Therefore, in this study, the power efficiency of the inductive coupling method is validated by MATLAB based on suggested values. By further researching and improvements, in the future the implantable and portable medical devices are expected to be free of batteries
    corecore